A Synchrotron Single Crystal X-Ray Structure Determination of a Small Crystal: Mo–Mo Double Bonds in the 3-D Microporous Molybdenum Phosphate $NH_4[Mo_2P_2O_{10}] \cdot H_2O$

H. E. KING, JR., LINDA A. MUNDI, KARL G. STROHMAIER, AND ROBERT C. HAUSHALTER*

Exxon Research and Engineering Co. Annandale, New Jersey 08801

Received September 10, 1990

Black crystals of NH₄[Mo₂P₂O₁₀] · H₂O, (1), can be isolated by reacting MoO₃, Mo, (NH₄)₂HPO₄, H₃PO₄, and H₂O in a mole ratio of 3:1.1:2:4:120 for 16 hr at 360°C. The structure of phosphate (1) was determined and refined from single crystal data collected on a $35 \times 20 \times 10 \,\mu\text{m}^3$ crystal at beamline X10A at NSLS, Brookhaven National Laboratory. Compound (1) is monoclinic, space group $P_{1/n}$ with a = 9.780(10), b = 9.681(5), c = 9.884(8) Å, $\beta = 102.17(8)^\circ$, V = 915(1) Å³ and $R(R_w) =$ 0.029(0.024) and contains MoO₆ octahedra and PO₄ tetrahedra. The structure is built up from Mo₄ oxo units that have two edge-sharing Mo⁴⁺O₆ octahedra that contain Mo–Mo double bonds (2.453(2) Å), with the same two oxygens that bridge the Mo⁴⁺ also serving as a corner for two additional Mo⁵⁺O₆ octahedra. The Mo₄ units are connected by phosphate groups into a 3-D array which generates several types of tunnel which are filled with NH⁴₄ cations and H₂O. The material is isotypic with the mineral leucophosphite, K[Fe₂(OH)(H₂O)(PO₄)₂] · H₂O. Water absorption isotherms show that (1) is microporous and has about 10–12 vol% internal void space that can be filled by water. \bigcirc 1991 Academic Press, Inc.

We have discovered several new mixed octahedral-tetrahedral frameworks in the molybdenum phosphate system that can be rendered microporous such as $(Me_4N)_{1.3}$ $(H_3O)_{0.7}[Mo_4O_8(PO_4)_2] \cdot 2H_2O(I)$, $(NH_4)_3$ $Mo_4P_3O_{16}(2)$, $Mo_8(H_2O)_6P_6O_{34}(OH)_2 \cdot 7H_2O$ (3), and $(CH_3)_2NH_2[Mo_2P_3O_{12}(OH)_2]$ (4). Here we describe the synthesis, structure, and sorption properties of NH_4 $[Mo_2P_2O_{10}] \cdot H_2O$, (1), a new phosphate containing edge-sharing $Mo^{4+}O_6$ octahedra, with Mo-Mo double bonds, that are connected to corner sharing $Mo^{5+}O_6$ octahedra and an open framework containing 10–12 vol% void space as determined from water absorption isotherms. The material is isotypic with the mineral leucophosphite, $K[Fe_2(OH)(H_2O)(PO_4)_2] \cdot H_2O$ (5), as well as $GaPO_4 \cdot 2H_2O$ (6) and $NH_4[Al_2(OH)$ $(H_2O)(PO_4)_2] \cdot H_2O$ (7).

When MoO₃, Mo, $(NH_4)_2HPO_4$, H_3PO_4 , and H_2O are reacted in mole ratios of 3:1.1:2:4:120 for 16 hr at 360°C, $NH_4[Mo_2P_2O_{10}] \cdot H_2O$ is obtained in varying yields and is often contaminated by small amounts of an amorphous white solid. We performed over forty reactions using this stoichiometry (or various perturbations on the reaction conditions) but only obtained (1) about 15% of the time. These reactions are run on a 10^{-3} mol scale at very high pressures, the Mo starting materials are 0022-4596/91 \$3.00

^{*} To whom correspondence should be addressed.

insoluble solids, and there is no way to stir the reactions. When (1) did not form, either $(NH_4)_3Mo_4P_3O_{16}$ (2) or $NH_4[Mo_2P_3O_{12}(OH)_2]$ formed as essentially single phase products. These observations all suggest that the species that initially nucleates determines which product forms. When (1) did form, the sample also often contained small amounts of an amorphous white solid. We have observed that the heating rate during the initial phases of the reaction can have a large effect on the product obtained and are currently investigating this aspect.

Since the small size of the crystals available $(35 \times 20 \times 10 \,\mu\text{m}^3)$ precluded analysis by conventional X-ray sources, we determined the structure using beamline X10A at the National Synchrotron Light Source at Brookhaven National Laboratory. There have been few previous single-crystal synchrotron studies of such small-unit-cell structures (8) because of the inability to obtain high precision data. In the only previous full-structure determination from such data, residuals of $R(R_w) = 0.094(0.08)$ were obtained (9). Our results, which are on a crystal of comparable size and complexity, are of a much higher precision $R(R_w)$ _ 0.029(0.024). This is due to the use of new experimental techniques, the main component of which is a new type of X-ray optics. Using a vertically defocused beam, we use three slits plus the small aperature presented by the sample diameter to define two, concident-path X-ray beams. Both of these beams are uniform in intensity over a ≈ 250 μ m diameter. One of these beams is directed into a monitor for use in tracking temporal fluctuations of the beam. The second beam illuminates the sample. Because the slits defining this narrow beam are several meters apart, they produce a very narrow acceptance angle. This reduces the intensity variation that comes from spatial beam fluctuations of the sort that arise from small changes in the electron orbit. Reducing this effect is of critical importance because the intensity measurements for a structure de-

TABLE I

Crystallographic I	DETAILS FOR	(1)
--------------------	-------------	-----

A. Experime	ntal details
Formula	NH/Mo-P-O-1 + H-O
Formual weight	449 87 o
Crystal dimensions	$35 \times 20 \times 10 \ \mu m^3$
Crystal evetem	monoclinic
No of reflections used for	13
unit cell determination	15
and refinement	
Cell parameters	a = 9.78(1) Å
cen parameters	h = 9.681(5) Å
	c = 9.884(8) Å
	$\beta = 102.17^{\circ}$ (8)
	$V = 915(1) \text{ Å}^3$
Space group	P2./n
7 value	1 21, 11
	$\frac{1}{3}$ 265 g cm ⁻³
E E E E E E E E E E E E E E E E E E E	860
2 000	$62 \ 21 \ \mathrm{cm}^{-1}$
μ ($\lambda = 0.915$ Å)	02.21 Cm
B. Intensity m	neasurements
Diffractometer	Huber 4-circle with vertical
	detector rotation
Monochromator	Double-Crystal Ge (111)
Radiation, NSLS X10A:	$\lambda = 0.915(2) \text{ Å}$
2.5 GeV, ≈125 mA	
Energy resolution, $\Delta E/E$	10-4
Detector aperture	Horizontal aperature =
	12 mm
	Vertical aperature = 5mm
Crystal to detector distance	345 mm
Scan type	Omega, unequal step size
Points per scan	100
Scan width, deg	1.0
$2\theta_{\rm max}$, deg	38.0
q range, $q = 2\pi$	$0.12 \text{ Å}^{-1} \leq q \leq 2.04 \text{ Å}^{-1}$
$\sin(\theta)/\lambda$	
No. of reflections measured	Total (incl. 1 std. every
	10 reflections) = 795
	$I > 3\sigma_{\rm I} = 662$
	Unique, $I > 3\sigma_I = 581$
Corrections	Lorentz-polarization
C. Structure solution	on and refinement
Structure solution	Direct methods (10)
Refinement	(17) Full-matrix least-squares
Function minimized	$SUM[w^{*}(/F_{0}/ - /F_{C}/)^{**2}]$
Least-squares weight	$1/\sigma_{\rm F}^2$
Anomalous dispersion	All nonhydrogen atoms
(Mo $K\alpha$ correction	
applied)	
No. observations	581
No. variables	75
Reflection/parameter ratio	7.75
Residuals $R(R_w)$	0.029(0.024)

termination are taken over several days of beamtime (10). Further details concerning the experimental techniques and structure determination are given in Table I. The atom coordinates are given in Table II.

A. Atom parameters				
Atom	x/a	y/b	z/c	U(iso) ^a
Mo(1)	0.3968(1)	0.0350(1)	0.9132(1)	0.0037 ^b
Mo(2)	0.1705(1)	0.1967(1)	0.4224(1)	0.0048
P(1)	0.8623(3)	0.1885(4)	0.2086(3)	0.0079(8)
P(2)	0.3430(3)	0.0165(4)	0.2093(3)	0.0099(9)
O(1)	0.9955(7)	0.5069(8)	0.2594(7)	0.012(2)
O(2)	0.7822(7)	0.0538(9)	0.2009(8)	0.012(2)
O(3)	0.7793(8)	0.6270(9)	0.7056(8)	0.012(2)
O(4)	0.5620(8)	0.1511(8)	-0.0028(8)	0.009(2)
O(5)	0.8146(7)	0.2858(8)	0.3081(8)	0.011(2)
O(6)	0.3058(7)	0.1016(9)	0.3261(8)	0.011(2)
O(7)	0.4793(8)	0.6595(8)	0.2475(8)	0.011(2)
O(8)	0.8679(8)	0.9362(9)	0.4875(8)	0.019(2)
O(9)	0.8429(8)	0.2501(8)	0.0598(8)	0.014(2)
O(10)	0.2028(7)	0.5882(8)	0.4328(8)	0.012(2)
O(11)	-0.012 (1)	0.163 (1)	0.740 (1)	0.067(4)
N(1)	0.116 (1)	0.321 (1)	0.982 (1)	0.045(4)

TABLE II FRACTIONAL COOPDINATES FOR (1)

B. Anisotropic thermal parameters

Atom	$U(11)^{c}$	<i>U</i> (22)	<i>U</i> (33)	<i>U</i> (23)	<i>U</i> (13)	<i>U</i> (12)
Mo(1)	0.0023(5)	0.0046(6)	0.0049(6)	0.0004(6)	-0.0009(4)	0.001(6)
Mo(2)	0.0029(5)	0.0069(7)	0.0057(6)	- 0.0004(6)	-0.0005(4)	0.013(6)

^{*a*} Coefficients of temperature factor T in A^2 ; $T = \exp(-8\pi^2 U(iso) (\sin \theta/\lambda)^2)$.

^b Given in A²; Ueq = $1/3 \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i a_j$. ^c Coefficients of temperature factor T in Å²; T = exp($-2\pi^2 \Sigma_i \Sigma_j U_{ij} h_i h_j a_i a_j$).

The structure (see Table III for bond lengths and angles) of (1) is best described in terms of the Mo_4 building blocks, (A), which resemble the Mo_4 unit (B), found in $Mo_8(H_2O)_6P_6O_{34}(OH)_2 \cdot 7H_2O(3)$, (2). Both centrosymmetric clusters are shown in Fig. 1 for comparison. Both have a central pair of edge-sharing (via O(4)) MoO₆ octahedra: these Mo atoms in (A) are connected by a Mo–Mo double bond (11) of 2.453(2) Å and have a calculated (12) oxidation state of 3.7+ based on the observed Mo-O bond lengths, while the analogous pair of octahedra in (B) contain Mo^{5+} and a Mo-Mo single bond of 2.63 Å (3). In both (A) and (B)

there are two additional Mo⁵⁺ containing octahedra, one corner of which is also O(4), making those oxygens three coordinate. The two central Mo^{5+} in (B) have disordered molybdenyl/water oxygen atoms over the four O sites perpendicular to the Mo₄ plane whereas in (A) the corresponding positions on the Mo⁴⁺ dimer are occupied by the oxygens of a bridging PO₄ tetrahedra.

These Mo₄ units are bridged together into a 3-D structure by PO₄ groups which generates an intersecting array of tunnels running through the structure. The tunnels are filled with equal numbers of NH_4^+ (at 1/2, 1/2, 0) and H_2O (at 0, 1/2, 0). A projection of the

TABLE IIIA Bond Lengths

Atom-atom	n Distance (Å)
Mo(1)	-
-Mo(1) 2.453(2)
O(1)	2.006(7)
-O(2)	2.060(7)
~O(4)	1.999(7)
O(4)) 2.010(7)
~O(5)	2.094(8)
-O(10	0) 2.039(8)
Mo(2)	
O(3)) 2.241(8)
~O(4)	2.044(8)
-O(6)	2.009(8)
-O(7)	2.015(8)
-O(8)) 1.652(8)
-O(9)	1.997(8)
P(1)	
-O(2)) 1.515(9)
-O(5)) 1.505(9)
-O(7)	1.543(9)
-O(9)	1.560(9)
P(2)	
~O(1)) 1.547(8)
-O(3)	1.520(9)
-O(6)) 1.523(9)
-O(10	0) 1.546(9)

structure down [010] is shown in Figs. 2a and 2b. To visualize the 3-D connectivity of the framework of (1), one can consider the structure to consist of layers lying in the (101) plane. One can isolate these layers from the structure via excission of the O(6)atoms which lie near the (202) plane (Figs. 2a and 2b). One such layer is shown in Fig. 2c and 2d, which is a projection down [101] and shows the interlayer connectivity of tetramer (A) into sheets by the phosphate groups.

Thermogravimetric analysis (TGA) shows that at a heating rate of 5° C · min⁻¹ in He, the sample starts losing water at $T > 30^{\circ}$ C and there is a weight loss of 3% completed at ca. 100°C (calculated for the loss of one H₂O, 4%). Continued heating gives a gradual 3.5% weight loss in the

TABLE HIB $O_{-}M_{-}O$ Angles

Mo(1) octahedron	
O(1) - Mo(1) - O(2)	89.43(31)
O(1) - Mo(1) - O(4)	87.28(31)
O(1)-Mo(1)-O(4)	93.97(32)
O(1)-Mo(1)-O(5)	89.27(30)
O(1)-Mo(1)-O(10)	177.02(34)
O(2) - Mo(1) - O(4)	168.85(33)
O(2) - Mo(1) - O(4)	86.31(31)
O(2)-Mo(1)-O(5)	83.17(30)
O(2)-Mo(1)-O(10)	91.69(29)
O(4) - Mo(1) - O(4)	104.54(26)
O(4)-Mo(1)-O(5)	86.13(30)
O(4)-Mo(1)-O(10)	91.10(31)
O(4) - Mo(1) - O(5)	168.96(28)
O(4)-Mo(1)-O(10)	88.86(33)
O(5)-Mo(1)-O(10)	88.12(31)
Mo(2) octahedron	
O(3) - Mo(2) - O(4)	81.21(30)
O(3)-Mo(2)-O(6)	80.60(30)
O(3)-Mo(2)-O(7)	82.69(30)
O(3)-Mo(2)-O(8)	178.26(36)
O(3)-Mo(2)-O(9)	86.18(30)
O(4)-Mo(2)-O(6)	161.11(32)
O(4) - Mo(2) - O(7)	95.07(30)
O(4)-Mo(2)-O(8)	99.92(35)
O(4)-Mo(2)-O(9)	89.79(31)
O(6)-Mo(2)-O(7)	87.66(31)
O(6)-Mo(2)-O(8)	98.38(37)
O(6)-Mo(2)-O(9)	83.94(31)
O(7)-Mo(2)-O(8)	95.87(36)
O(7)-Mo(2)-O(9)	167.03(32)
O(8)-Mo(2)-O(9)	95.12(35)
P(1) tetrahedron	
O(2) - P(1) - O(5)	110.03(43)
O(2)-P(1)-O(7)	109.58(45)
O(2) - P(1) - O(9)	108.81(45)
O(5)-P(1)-O(7)	111.18(44)
O(5) - P(1) - O(9)	112.56(45)
O(7)-P(1)-O(9)	104.51(44)
P(2) tetrahedron	
O(1) - P(2) - O(3)	110.23(45)
O(1) - P(2) - O(6)	106.13(41)
O(1) - P(2) - O(10)	107.28(42)
O(3) - P(2) - O(6)	110.49(44)
O(3) - P(2) - O(10)	110.47(44)
O(6)-P(2)-O(10)	112.11(44)

FIG. 1. The Mo₄ tetramer (**A**) found in (**1**) shown as both (a) ball-and-stick (*14*) and (b) polyhedral representations (*15*); (c) the similar Mo₄ tetramer (**B**) found in $Mo_8(H_2O)_6P_6O_{34}(OH)_2 \cdot 7H_2O$ (3) (see text). The Mo are stippled. Note the additional phosphate groups in tetramer (**A**).

150–300° range from NH_3 removal (calculated value = 4%). IR spectra show that the absorption due to the NH_4^+ is gone after the heat treatment. Samples of (1) are microporous as demonstrated by the Type I absorption isotherm (13) shown in Fig. 3. Although the absorption is totally reversible, and both the H₂O and the NH_4^+ are removed during the heating/degas cycle according to the TGA data, the amount reabsorbed at 20°C corresponds to filling only about half of the space that was occupied by the H₂O and the NH_4^+ . The width of the peaks in the powder X-ray diffraction pattern of (1) are essentially unchanged after heating to 500°C under He, suggesting little loss of order in the lattice; however, absorption isotherms after heating to 550°C show the sample only sorbs <1 wt% H₂O and most of it adsorbs to the surface. This may be due to the tunnels being partially blocked by dehydroxylation (there is a weight loss observed in the TGA at ca. 410°C, typical of water loss in an oxide from dehydroxylation) from the hydroxyl groups generated from the proton left be hind when the NH⁴₄ decomposed to NH₃

FIG. 2. Ball-and-stick and polyhedral projections of the unit cell contents of (1) down [010] (a and b) down [101] (c and d). The water and NH_4^+ molecules in the tunnels are not shown.

FIG. 3. Water absorption isotherm for degassed (1) at 20°C demonstrating the absorption of water into the micropores (degas conditions: 200° C for 4 hr at 10^{-3} Torr).

and H^+ . The other isotypes discussed above have much less thermal stability probably due to the presence of terminal H_2O ligands and hydroxy groups whereas (1) has terminal molybdenyl and oxo groups in the corresponding parts of the structure.

The tetrameric Mo_4 unit, and its associated PO_4 tetrahedra, is topologically identical to the hydrated hydroxy ferric phosphate unit found in the mineral leucophosphite (5). In this mineral, which is usually pale green and has an Fe–Fe distance of 3.11 Å, there appears to be little metal–metal interaction, unlike the 2.45 Å metal–metal double bond contact found in (1).

We are currently examining other syn-

thetic routes to (1) in attempts to improve the yield, phase purity, and reproducibility.

Acknowledgments

We are grateful to Dr. Paul B. Moore, University of Chicago, for alerting us to his structure determination of leucophosphite and for many stimulating discussions. We thank the U.S. Department of Energy which operates the National Synchrotron Light Source at Brookhaven National Laboratory.

References

- R. C. HAUSHALTER, K. G. STROHMAIER, AND F. W. LAI, Science 246, 1289 (1989).
- R. HAUSHALTER, L.MUNDI, AND H. E. KING, JR., J. Solid State Chem., in press.
- R. HAUSHALTER, L. MUNDI, D. GOSHORN, AND K. STROHMAIER, J. Amer. Chem. Soc. 112, 8183 (1990).
- 4. R. HAUSHALTER, L. MUNDI, AND K. STROH-MAIER, Inorg. Chem., in press.
- 5. P. B. MOORE, Amer. Mineral. 57, 397 (1972).
- 6. R. C. L. MOONEY-SLATER, Acta Crystallogr. 20, 526 (1966).
- J. J. PLUTH, J. V. SMITH, J. M., BENNETT, AND J. P. COHEN, Acta Crystallogr. Sect. C 40, 2008 (1984).

- R. BACKMANN, H. KOHLER, H. SCHULZ, AND H. WEBER, Acta Crystallogr. Sect. A 41, 35 (1985);
 F. S. Nielsen, P. Lee, and P. Coppens, Acta Crystallogr. Sect. B 42, 359 (1986); P. Süsse, M. Steins, and V. Kupcik, Zeit. Kristallogr. 184, 1988 (1988).
- S. A. ANDREWS, M. Z. PAPIZ, R. MCMEEKING, A. J. BLAKE, B. M. LOWE, K. R. FRANKLIN, J. R. HELLIWELL, AND M. M. HARDING, Acta Crystallogr. Sect. B 44, 73 (1988).
- The experimental details of the synchrotron crystallography will be published elsewhere; H. E. King, Jr., R. Haushalter, unpublished results, 1990.
- 11. M. H. CHISHOLM, *Polyhedron*, 2, 681 (1982) and references therein.
- I. D. BROWN, AND K. K. WU, Acta Crystallogr. Sect. B 32, 1957 (1976); W. H. Zachariasen, J.Less-Common Metals 62, 17 (1978).
- 13. D. M. RUTHVEN, "Principles of Adsorption and Adsorption Processes," p. 49 Wiley, New York, (1984).
- 14. CHEM-X, designed and distributed by Chemical Design, Ltd., Mahwah, NJ.
- STRUPLO-84, R. X. Fischer, J. Appl. Crystallogr. 18, 258 (1985).
- 16. Structure Determination Package, Enraf-Nonius Co., Delft, Holland.
- 17. Crystals, Chemical Crystallography Laboratory, Oxford University, Oxford, England.